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A new and automatic degree selection technique based on the approximate modal energy
has been derived and developed for matrix condensations in this paper. The method is used
to condense the number of degrees of the matrix when dealing with eigenvalue problems.
By defining a new basis in the vicinity of the original space, the individual modal energy
gradients can be evaluated. The primary degrees of freedom are then determined according
to the variation of the energies in the neighborhood. In case the energy variation of a
degree tends to increase in that neighborhood, the degree is classified as secondary since it
relatively provides energy to the nodes nearby. On the other hand, if the energy variation is
decreasing, then it is primary. All the classification criteria are finally mapped to one
parameter, which is called the index of classification. That is, by examining the magnitude
of the index of classification, one is able to determine the primary and secondary degrees.
The new selection method is demonstrated and verified by a well-known cantilever beam
problem in addition to the error bound estimation.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Applying the finite element method (FEM), the determination of eigenvalues together with
their corresponding eigenvectors plays an important role in the study of dynamic
behaviors of structural systems. This is mainly because a sufficient number of eigenvalues
and vectors define fairly well the characteristics of a dynamic problem. However, the high
order of matrices obtained by a finite element discretization makes it impractical in the
speed of computation. As a consequence, a special treatment of this type of eigenproblems
so that the lowest eigenfrequencies can be accurately and effectively computed is essential.

The difficulties are usually overcome by the so-called condensation (or reduction)
techniques, which reduce the order of system matrices by picking out several primary
(or principal) degrees of freedom (d.o.f.s) and excluding auxiliary (or secondary) ones. The
concept of this matrix condensation is a well-known procedure [1, 2] and may be regarded
as Gaussian elimination of displacement in the matrix form in a static problem. The same
concept was first applied to dynamic problems by Irons [3], later by Guyan [4] and is
referred as the ‘‘static condensation’’ [5] or ‘‘Guyan reduction.’’ The accuracy was
reported well in the case of a lumped mass analysis, when elimination is done only to those
massless degrees in the mass matrix [4, 6]. On the other hand, however, the accuracy
depends to a large extent on the experience of the analyst to select or to redistribute the
mass appropriately, and that the accuracy is hardly assessed.

A slightly advanced condensation technique is ‘‘dynamic condensation’’ or ‘‘mass
condensation’’ which is derived by assuming that the virtual work done by inertial forces
2-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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in the original system is equal to that done by the inertial forces in the reduced system [6].
The poor accuracy of static condensation is improved by the dynamic condensation
technique [6–8] by taking into account the inertial effects of secondary degrees to the final
form. Using the dynamic condensation, in fact the accuracy of dynamic condensation is
reached mainly by distributing right mass to the corresponding degrees when a consistent
mass form is used in the FE formulation. The so-called ‘‘modified dynamic condensation
method’’ proposed by Paz [9] was reported to have better accuracy and reasonably fast in
computation if elemental elimination process has been done to the original system
matrices. Unfortunately, the technique still largely relies on the user’s experiences to select
the primary d.o.f.s.

In order to automatically select the principal co-ordinates, Grinenko and Mokeev [10]
tried to develop a pure machine-dependent algorithm. The algorithm was named
‘‘dynamic frequency condensation,’’ in which a very strong condition is assumed within
the condensation ranges. This condensation method was also found [11] too time
consuming in real application although the main shortcoming of the dynamic
condensation was removed. Motivated by this, the author has presented a new reduction
with a new mass corrector [11,12] a few years ago by using the similarity transformation.
However, more and more calculations have revealed that such successive transformations
are hard to preserve the relation back to the original space. And thus it limits in use. In
order to overcome this difficulty, this report presents a new concept to select the primary
d.o.f.s.

2. DERIVATION OF THE METHOD

In the dynamic analysis of a structural system, it is very common to utilize a FEM. For
example, the equation of motion for a structure can be represented in the matrix form as

M .xxþ rð ’xx; xÞ ¼ fðtÞ; ð1aÞ

where M is the mass matrix, r the damped restoring force vector and f the external
excitation force vector. The restoring force vector r(.) may be linear or non-linear
depending on the nature of structural systems. In case of non-linear ones, it may be
linearized by using the so-called linearization methods, e.g., [13] for most problems. Thus,
it is reasonable to restrict the consideration to the linear one, or equation (1a) has the form

M .xxþ C ’xxþKx ¼ fðtÞ; ð1bÞ

where C and K are the classical damping and stiffness matrices respectively. On the other
hand, if the state vector u(t) is defined as

uT ¼ fxT; ’xxTg ð2Þ

then equation (1) takes the first order form

M ’uuþ K u ¼
fðtÞ
0

( )
; ð3Þ

in which

M ¼
C M

M 0

" #
and K ¼

K 0

0 �M

" #
: ð4Þ
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All these M; C and K matrices can be obtained by the FE assemblage. Basically,
augmented matrices M and K still, respectively, keep the properties of mass and stiffness
of the system.

The equation of motion may be numerically solved either in real mode from
equation (1) or in complex made from equation (3). In general, modal approximation
methods are most widely adopted for the estimation of the system responses. That is, one
assumes that the responses due to the force vector f(t) of certain frequency will have large
participation factors for frequencies nearby certain natural frequencies of the structure. In
other words, the true system responses may be approximated by a new basis of a smaller
dimension. The basis certainly is a subset of the original modal vectors, while the quality
of the approximation depends mainly on: (a) how many modal vectors are included to the
subset to form this new basis; and (b) how the subset basis can represent the original
modal ones. There exist many studies concerning first part. Papers or reports on the mode
superposition or acceleration methods are the best examples. For the second part, not as
popular as its counter part, it did not attract too much attention in this area. The present
report will concentrate its discussion on this part.

It is clear that all the modal methods start with an eigenvalue problem. That is, based
either on equation (1) or (3), one is to consider the generalized eigenvalue problem in the
matrix form

KF ¼ MFL ð5Þ

with conditions

FTKF ¼ L and FTMF ¼ I ; ð6Þ

where L is a diagonal matrix containing all system eigenvalues l or o2, and the columns in
F are the corresponding eigenvectors or the mode-shapes. The stiffness matrix K is
positive definite, may be symmetric or non-symmetric, and has order n. On the other hand,
the matrix M may be positive definite or semi-definite depending on the mass matrix M:
However, the mass matrix is assumed to be positive definite since it can be reduced to that
by a traditional static condensation or a shift [14]. From the physical point of view or from
the properties of the external excitations, some d.o.f.s in the FE assemblage matrices are
considered to have more weight to the final responses than the others. Equation (5) may be
written in the partitioned matrix form for an arbitrary eigenpair (l, f) as

Kss Ksr

Krs Krr

" #
fs

fr

( )
¼ l

Mss Msr

Mrs Mrr

" #
fs

fr

( )
; ð7Þ

where the subscript r denotes the principal or primary co-ordinates which are comparably
significant and account for a large error if they are neglected, and the subscript s stand for
the secondary co-ordinates and in case they are dropped may not cause too much error. In
order to write in terms of the format equation (7), both matrices of M and K may need to
be re-arranged so that the primary co-ordinates cluster to the lower part of the matrix.
Notice also that the secondary co-ordinates can be regarded as internal d.o.f.s which are to
be eliminated, while the principal ones regarded as a boundary set are to be retained in the
concept of sub-structure analysis [4]. Solving for fs from the upper equation of (7), one
has the form

fs ¼ � Kss � lMssð Þ�1
Ksr � lMsrð Þfr ¼ �Tsrfr; ð8Þ
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where the transformation matrix Tsr is a function of l and is obtained by the Taylor
expansion of matrix ðKss � lMssÞ�1 or

TsrðlÞ ¼ T0
sr � l Usr � UssT

0
sr

� �
� l2 UssUsr � Uss� UssT

0
sr

� �� �
þ Oðl3Þ þ � � � ; ð9Þ

and

T0
sr ¼ K�1

ss Ksr; ð10Þ

Usr ¼ K�1
ss Msr and Uss ¼ K�1

ss Mss:

If Tsr(l) is truncated up to the first order of the eigenvalue l of the system, then Tsr takes
the form

T1
sr ¼ T0

sr � l �Usr þ UssT
0
sr

� �
; ð11Þ

and the secondary co-ordinates fs satisfy

fs 	 �T1
srfr and TsrðlÞ 	 T1

sr: ð12Þ

Note that the matrix T0
sr does not contain any term associated with l in the upper

equation, and is the transformation matrix for traditional static condensations [3, 4]. In
addition, since the matrix K is positive definite, sub-matrix Kss is non-singular and thus
K�1

ss exists, and so do all terms associated with T0
sr and K�1

ss : Substituting equation (8) into
the lower equation of (7), it leads to the form

½ðKrr � lMrrÞ � ðKrs � lMrsÞTsr�fr ¼ 0: ð13Þ

From equations (8), one may write

f ¼
fs

fr

( )
¼ T�fr ¼

�Tsr

I

" #
fr; ð14Þ

in which T of dimension n� r is the transformation matrix, and I the identity matrix of
order r. But since Tsr is approximated by T1

sr; one has only an approximate #ff; or

f 	 #ff ¼ #TT�fr ¼
�T1

sr

I

" #
fr; ð15Þ

instead of f: The main function of the transformation matrix in equation (14) or (15) is
that it maps the basis fr of condensed sub-space back into the original modal space f: In
other words,

T : fr ! f and #TT : fr ! #ff ð16Þ

with condition jjf� #ffjj5e; where e is a small and negligible error parameter, and they are
normalized in the same manner.

Using equation (11) into equation (13), expanding the resulting equation, and collecting
the terms of like power of l, one has

½ *Krr � l *Mrr þ l2 *Crr þ l3 � � ��fr ¼ 0; ð17Þ

where

*Krr ¼ Krr � KrsT
0
sr; ð18aÞ

*Mrr ¼ Mrr þ ½�Mrs þ KrsUss��T0
sr � Krs�Usr ð18bÞ

*Crr ¼ ½�Mrs þ KrsUss��½Usr � ðUss�T0
srÞ�: ð18cÞ
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Sub-matrices in equations (18) have been grouped for the sake of the computation. In
addition, in case the matrix M is diagonal, matrices *Mrr and *Crr may be further simplified
to

*Mrr ¼ Mrr þ Krs�Uss�T0
sr; ð19aÞ

*Crr ¼ �ðKrs�UssÞ�ðUss�T0
srÞ: ð19bÞ

It is clear that equations (9) and (13) are valid only if the condition [14]

jjðI� lUssÞ�1jj � 1

1� ljjUssjj
ð20aÞ

is valid. Or equivalently, the expression

r0 K�1
ss �Mss

� �
¼ r0ðUssÞ51

l ð20bÞ
is satisfied. Here r0(.) denotes the spectral radius or the maximum eigenvalue of the
matrix.

Equation (13) becomes dynamic reduction [7] if the terms of order of l higher than two
are neglected. Or, one writes the approximate eigenvalue problem as

*Krr � #ll *Mrr

h i
fr ¼ 0: ð21Þ

However, the derivation of the traditional dynamic reduction method is based on the
principle of virtual work, [e.g., see reference 6]. As a consequence, the constraint
equation (20) is somehow lost due to the assumption of the dependence by acceleration
vector terms. If all sub-mass matrices are further set to zero except Mrr in equations (18),
then equation (21) may even reduce to the static condensation. Hence, equation (12) or
(14) plays the role of linking the secondary (or internal) and primary (or boundary)
co-ordinates in the condensation methods.

3. SELECTION OF PRINCIPAL CO-ORDINATES

From the last section, it is obvious that sufficiently accurate retention of the kinetic
energy of the system is necessary for condensation. It turns out that the following question
arises: How many and which co-ordinates must be chosen as principal d.o.f. in order to
ensure sufficiently accurate eigen-frequencies? Traditionally, selection is done mainly by
relying on the engineer’s experiences based on the dynamic natures of systems.
Unfortunately, the determination of principal co-ordinates may not always be obvious
for many physical systems. Moreover, the principal co-ordinates depending upon the
engineer’s intuition are simply not reliable enough. The so-called ‘‘automatic’’ selection
method was presented by Henshell and Ong [15]. The method is to scan the leading
diagonal terms and to select those degrees that give the highest eigenvalues as the
secondary degrees. As far as the author can see, the method is good solely for a few ideal
systems. Another selection technique [16], which is based on the Ritz basis vectors, can be
taken as a special case of the Gershgorin theorem [11, 17]. Thus, as discussed in
reference [11], it is reliable only for cases where the system matrix is diagonally dominant
or the Gershgorin disks of the matrix are mutually isolated from others. Otherwise, error
arises.

In order to generalize the selection technique based on the Gershgorin disks, a
computation procedure, which adopts the QR (or QL) decomposition, has been proposed
in reference [12]. In the procedure, a new termination criterion is imposed at the stage of
iterative Householder transformation to reduce the system matrix into tri-diagonal form.
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Basically, the criterion is accomplished together with an exchange sub-routine reported in
reference [18]. The selection scheme is sophisticated if only the eigenvalues are of interest.
However, the basis of the transformed space can hardly be traced by the utilization of the
exchange procedure. And thus it is limited in use. In fact, some works, [e.g., 15,19–21] have
been done in order to overcome the problem of the selection of principal d.o.f.s when
using a condensation method. Unfortunately, they gave only a few heuristic guidelines.
None of them, to the author’s knowledge, can be directly applied in a computer program
even though those guidelines are quite useful. Thus, the main goal of this paper is to find a
way that may solve this dilemma and to bridge the gap between the guidelines and
computer programming.

As it is well known that eigenvalues are close relative to the Rayleigh quotient l(f) and
there are defined by

l ¼ fTKf

fTMf
: ð22Þ

If the response vector u(t) is set as uðtÞ ¼ feiot with l=o2, then the eigenvalue can be
written as

l ¼ V

*T
; ð23Þ

where V ¼ fTKf is the strain energy and T ¼ o2 *T ¼ o2fTMf is kinetic energy
corresponding to mode f. Therefore, evaluating the modal energy of individual modes
may be a way to solve the problem of identifying primary d.o.f.s.

A generalized eigenvalue problem in equation (5) can be easily transformed to the
standard form [1] as

Af ¼ lIf; ð24Þ

for an arbitrary eigenpair (l, f) for l2L and f2F. Matrix A=[aij] in equation (24) is
called the system matrix which may be symmetric or non-symmetric depending on the
transformation. Therefore, without loss of generality, the discussion henceforth will be
given to the standard eigenvalue problem. In the next step, one defines a set of vector
vk�Rn, k=1, 2, 3, . . ., n, in the neighborhood of the natural basis #eek ¼ dkj(Kronecker
delta, dkj ¼ 1 if k=j and dkj ¼ 0 for k=j), k=1, 2, 3, . . .,n, such that for some small g

vk ¼ vi 8vi 2 vk; vi ¼ cg k�ij j if k � ij j � b; vi ¼ 0; otherwise
��� T

; ð25Þ

where the bandwidth of the system matrix is 2b + 1. The parameter c in equation (25) is a
normalization factor. In fact, vk has the form

vk ¼ 0; . . . 0; gb; gb�1; . . . ; g;|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
b

1
z}|{kth

; g; g2; . . . ; gb|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
b

; 0; . . . ; 0

8<
:

9=
;

T

ð26Þ

if c has taken the value of unity. That is, the basis vk can be expressed in terms of the linear
combinations of the natural basis. Note also that if the system matrix is diagonal or b=0,
then vk ¼ #eek for all k. Clearly, all vk are linearly independent if the parameter g is set to a
small value since they are in the vicinity of the natural basis. Figure 1 depicts the relations
between the natural basis and vk for n=3. Therefore, vk may be called a ‘pseudo-natural
basis’ and spans the space of dimension n.

From the physical point of a matrix, the quadratic transformation by expanding vTk A vk

is to consider the adjacent elements of akk with different weights akk. And the elements
closer to akk have higher weight. In addition, in case g is taken as positive, then the effects
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Figure 1. Basis v is in the vicinity of the natural basis #ee:
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Figure 2. Decreasing weights of the adjacent elements to akk when a negative g is chosen.
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of the adjacent entries are considered to ‘‘flow in’’ to akk, while a negative g means
‘‘flowing out’’ from it. Furthermore, if a larger value of g is chosen, even more weight has
been put on the corresponding diagonal entry. Figure 2 shows the concept. In fact, if one
defines an n� n transformation matrix P by collecting all vk as its column vectors, then P is
non-singular. And the similarity transformation of A by P is given by

B ¼ P�1A P ð27Þ

where B preserves the eigenvalues of A, as it is well known. However, the diagonal terms of
B and A will not be equal even though trace(A)=trace(B) since the transformation in
equation (27). Note also that the computation of inverse of P would be impractical if the
dimension n is getting large. As the consequence, the transformation of equation (27) does
not give much help in the computation.

Let us define a special matrix transpose T* by an ordinary matrix transpose operation in
addition to change of sign in all non-diagonal terms, i.e., to perform a matrix transpose
and change the sign of elements except those of the axis of transposing. Therefore
operation T* satisfies (AT*)T*=A. Let kth element of vector vk be the pivot, then T*
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transpose of the vector as

ðvkÞT
�
¼ 0; . . . 0;�gb;�gb�1; . . . ;�g;|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

b

1
z}|{kth

;�g;�g2; . . . ;�gb|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
b

; 0; . . . ; 0

8<
:

9=
;: ð28Þ

Thus, if a matrix Q is collecting all (vk)
T*, k=1, 2, . . .,n, as its column vectors, then it

satisfies

Q ¼ PT� ffi P�1 ð29Þ

and the transformation in equation (25) may be approximated by

B ffi PT�
AP ð30Þ

if g is taken a small value close to zero. Therefore, the diagonal elements of B contain all
eigenvalue information of A, but with a small amount of error that depends on the
magnitude of g.

Define a scalar function U in the orthonormal basis f of A such that

U ¼
X

i

fT
i Af ¼

X
i

Vi ¼ traceðAÞ; ð31Þ

is the total strain energy of the system and can be easily computed from A. Vi in
equation (31) is called the modal energy of the ith mode. Now, let

#UU ¼
X

i

vT
�

i Avi

vT
�

i �vi

ffi
X

i

vT
�

i Avi ¼
X

i

#VV i ¼ traceðBÞ; ð32Þ

where #VV i; for all i, are the approximated modal energies in the space spanned by the
pseudo-natural basis v. In case the system matrix A is diagonal, then

#UU ¼ U ¼
X

i

#eeTi A#eei ð33Þ

since v and f are all equal to the natural basis #ee: And the modal energies Vi are directly
mapped into the natural basis. As a consequence, one is able to discard those coordinates
with higher value of aii since they contain more modal strain energy and account for the
higher values of eigenvalues. In general, however, matrix A is not diagonal but banded
with some bandwidth in most systems. Hence, for any eigenvector fi of A can be expressed
in terms of the linear combinations of #ee; i.e.,

fi ¼
Xn

j¼1

aj #eej ; ð34Þ

for all 14i4n. However, one may expect that there exists an #eek such that the fi is just in
the neighborhood of that #eek: In other words, one expects that most of ai are close to zero
except a few terms. Let us assume fi be in the vicinity of #eek: Then

ak ¼ Oðe0Þ;
ak�1 ¼ Oðe1Þ ¼ akþ1;

ak�2 ¼ Oðe2Þ ¼ akþ2;

� � � ð35Þ
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Therefore, the ith modal energy Vi may be written as

Vi ¼ fT
i Afi

ffi #eek þ OðeÞ½#eek�1 þ #eekþ1� þ � � �ð ÞTA #eek þ OðeÞ½#eek�1 þ #eekþ1� þ � � �ð Þ

¼ ð#eekÞTA#eek þ e #eeTk A½#eek�1 þ #eekþ1� þ ½#eeTk�1 þ #eeTkþ1�A#eek

� �
þ e2ð. . .Þ þ � � � : ð36Þ

Similarly, the corresponding modal energy approximated by v is

#VV k ¼ ðvT�

k AvkÞ

¼ ð#eekÞTA#eek þ g #eeTk A½#eek�1 þ #eekþ1� � ½#eeTk�1 þ #eeTkþ1�A#eek

� �
þ g2ð. . .Þ þ � � � : ð37Þ

By comparing equation (36) with (37), one can conclude that as g ! e, which is small,
there exists an approximate modal energy of mode k such that #VV k !Vi with error of order
e. Examining equation (37), one has noticed that there exist negative terms which are
produced by the T* operation. Thus, the approximate modal energy #VVk largely depends on
the system matrix A, as will be discussed in the following.

(i) Matrix A is symmetric

In case matrix A is symmetric, equation (37) can be simplified as

#VV k ffi ð#eekÞTA#eek � g2 #eeTk�1A #eek�1 þ #eekþ1½ � þ #eeTkþ1A #eek�1 þ #eekþ1½ �
� �

; ð38Þ

where the terms associated with g1 cancell out each other because of symmetry. It is clear
that the kth modal energy in equation (38) contains two parts: the modal energy produced
from the diagonal entry of A and that from the terms in the vicinity. However, the
variation of #VV k mainly depends on the sum in the parentheses, which are the terms
associated with g2.

Taking the derivative of #VV k with respect to parameter g from equation (38), one has

@ #VV k

@g
¼ �2g #eeTk�1A #eek�1 þ #eekþ1½ � þ #eeTkþ1A #eek�1 þ #eekþ1½ �

� �
þ � � � ¼ �2g�dk þ � � � ; ð39Þ

where the new parameter dk has been used to signify the sum of the terms in the
parentheses. Note from equation (39) @ #VV k=@g is the function of parameter g and @li=@g ffi
@ #VVk=@g; 14i4n. On the other hand, for the sake of computations, the derivative may be
approximated by

sk ¼ bk;k � ak;k

g� 0
ffi @ #VV k

@g
for all 1 � k � n; ð40Þ

where bk;k is the kth diagonal terms in matrix B of equation (30). The parameter s is
actually the rate change of modal energies with respect to g, or called the (approximate)
modal energy gradients. Figure 3 shows the idea for the case n=2. Note also that bk;k ¼
#VV k: Therefore, the approximate energy gradient vector can be easily computed from the
diagonal terms of bk;k and ak;k: As a consequence, the modal energy changes for individual
modes can be evaluated.

Define a new parameter mk, k=1, 2, . . ., n, such that

mk ¼ 1

#VV k

ffi 1

ð#eekÞTA #eek þ 2g�sk

: ð41Þ

Depending on the size of mk, which is a function of ak;k; parameter g and the kth modal
energy gradient, it may be used to classify the secondary d.o.f.s from the primary ones. In
other words, the d.o.f.s with larger mk are more likely to be primary. For this reason,
parameter m is called ‘the index of classification.’ If the variation of #VV k is increasing, mk
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1ê

2ê
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Figure 3. Energy gradients for n=2 (*; eigenvalues; *; ak,k; }; bk,k).

Table 1

Tendency for signs of energy gradients and g of for the kth d.o.f. of symmetric matrices

(P: primary, S: secondary)

g Sign of sk
#VVk kth d.o.f. tends to be

g50 + Decreasing P
} Increasing S

g > 0 } Decreasing P
+ Increasing S
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turns out to decrease. Then the kth d.o.f. tends to be secondary and there is the modal
energy flow out from ak;k: On the contrary, if #VVk is decreasing, #VV k is providing the energy
to ak;k: Thus, the kth mode has lower modal energy and may be taken as a primary d.o.f.
In addition, the magnitudes and signs of g and sk decide the tendency of this modal energy
variation. All the conclusions are summarized in Table 1.

Therefore, the definition of the primary degrees may be given as those degrees whose
diagonal terms of the system matrix obtain modal energy with relatively high variation
rate from the neighborhood. While, on the other hand, the secondary degrees are the
degrees whose diagonal terms provide their own modal energies with relatively high
gradient of energy variations. It also implies that the primary degrees tend to affect the
lower eigenvalues, and the secondary may affect mostly the higher.

(ii) Matrix A is non-symmetric

In case the system matrix A is non-symmetric but with real eigenvalues, the procedure
mentioned earlier has to be modified. From equation (37), one keeps the terms up to the
first order of g, or

#VV k ffi ð#eekÞTA #eek þ g #eeTk A½#eek�1 þ #eekþ1� � ½#eeTk�1 þ #eeTkþ1�A #eek

� �
: ð42Þ

And the derivative with respect to g has an approximate form

sk ffi @ #VV k

@g
ffi #eeTk A ½#eek�1 þ #eekþ1� � ½#eeTk�1 þ #eeTkþ1�A #eek

� �
; ð43Þ
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where the modal energy gradients sk is defined the same as equation (41). Unlike its
counterpart, the modal energy gradients here is not a function of g, but only a function of
elements of A in the vicinity of ak;k: Therefore, the classification for the non-symmetric
matrices is more effective than that for symmetric ones. From equations (42) and (43), one
can express the approximate modal energy #VVk as

#VV k ffi ð#eekÞTA #eek þ g�sk: ð44Þ

Therefore, similar to the case of symmetric matrices, one can define

mk ¼ 1

#VV k

ffi 1

ð#eekÞTA #eek þ g�sk

ð45Þ

for the index of classification. Meanwhile, one can also summarize the effects as of the
modal energy gradients to this index, as shown in Table 1.

Hence, by using the pseudo-natural basis v and evaluation the approximate modal
energy #VV k and the indices of classification, one is able to discriminate the secondary d.o.f.s
as well as the primary. This method is thus named the ‘modal energy selection method.’

4. THE MAGNITUDE OF PARAMETER g

As it has been mentioned in the derivation, the magnitude of parameter g is directly
related to the efficiency of the discrimination of d.o.f.s. In order to decide its magnitude,
one may write the transformation matrix P in equation (27) as the identity matrix with a
perturbation matrix DE, or

P ¼ I� DE: ð46Þ

Clearly, the perturbation matrix DE is a function of g and has the norm

jjDEjj1 ¼ 2
Xb

i¼1

jgji ¼ 2jgj
1� jgj ð47Þ

if |g |51.0 and |g |b	 0. Hence, the inverse of P can be correspondingly expressed as
P�1 ¼ ðI� DEÞ�1; or

P�1 ¼ Iþ DE þ ðDEÞ2 þ � � � ð48Þ

with condition jjDEjj51:0; or equivalently, gj j51
3
: On the other hand, T* of matrix P or

PT�
; may also be written in the perturbation form PT� ¼ I� DE�: It is clear that the

perturbation matrix DE*=�DE since the definition of T* transpose. Therefore, the error
bound for the difference between P�1 and PT�

is

jjP�1 � PT� jj ¼ jjðIþ DE þ DE2 þ � � �Þ � ðIþ DEÞjj

� jjDEjj2 þ jjDEjj3 þ � � � ffi 4jgj3

1� jgj: ð49Þ

In case g=0�2, for example, the error between them is approximately bounded at the
matrix norm 0�04. In other words, using the modal energy selection method (MESM), the
decision based on the value below this value is not reliable.

Examining equations (37), (38) and (42), the approximate modal energy is valid only if
the terms of higher orders are comparatively smaller than the first order of g term. That is,
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at least the expression

#eeTk A½#eek�1 þ #eekþ1� � ½#eeTk�1 þ #eeTkþ1�A#eek

�� ��cg� #eeTk A½#eek�2 þ #eekþ2�
��

� ½#eeTk�2 þ #eeTkþ2�A#eek � #eeTk�1A½#eek�1 þ #eekþ1� � ½#eeTk�1 þ #eeTkþ1�A#eek�1j ð50Þ
must be true. However, this condition can be satisfied automatically if the tri-diagonal
terms are dominant, or all elements of A are in the same order. Refer to Figure 2 for the
explanation. Hence, on the other hand, as the guidance of selection for g, it is imperative
that the chosen parameter g must not change the sign of #VV k from ak;k: Otherwise, the
MESM fails. Moreover, from equation (38) and (42), if all #VV k; k=1, 2, . . ., n, of the matrix
are equal, the MESM fails as well.

5. APPLICATION EXAMPLES

In order to demonstrate the procedure of the MESM, two examples are given below.
The first one is an arbitrarily given matrix of small dimension, while the second is the
simple structural problem formulated from an FEM.

(i) Example 1: A 5� 5 matrix

A symmetric matrix given by

A ¼

4:1

�0:3 3:0

0:0 0:4 3:0

0:0 �0:4 �0:3 3:0

0:0 0:0 0:3 0:2 1:9

2
6666664

3
7777775

1

2

3

4

5

is considered as the first example. Note that the numbers to the right of the matrix are
d.o.f.s. One cannot identify the effects of each degree using any existing methods since it
has three repeated Gershgorin disks at center 3�0, shown in Figure 4. Two eigenvalues in
the isolated disks have been known. The one with the center at 1�9 is the primary degree,
while that at 4�1 is secondary. However by applying MESM, let g=0�1 in equation (26),
one is able to define the five pseudo-basis vk, k=1–5. Therefore, the approximate modal
energies and the gradients of the individual d.o.f.s can be calculated from equations (32)
and (40), respectively, and the indices of classification are computed in accordance with
equation (41). The results of the computation are then shown in Figure 5.

The dashed line in Figure 5 indicates that fifth degree of A is primary since it has the
relatively largest m. The first degree is secondary because m1 is the smallest. All other three
d.o.f.s cannot be identified by the indices of classification along. However, s2 and s5 appear
to be negative. Thus, according to the results concluded in Table 1, these two degrees have
the tendency to be primary. In other words, the second and fifth affect the lower
eigenvalues most. In addition, the figure also shows that the difference between
3.02.0 

centers

4.0

Figure 4. Gershgorin disks of matrix A.
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transformation of equations (27) (denoted by g=0) and (30) is negligibly small. However,
the approximate modal energy gradients defined by equation (40) still reveal the trends of
energy variations. The fourth degree is recognized as the secondary; however, the
conclusion may not be reliable since the computed energy gradient is less than the bounds
defined in equation (49).

In order to verify the results predicted from Figure 5, all eigenvalues are computed by
eliminating one degree from matrix A, and the results are plotted in Figure 6. As one can
see from Figure 6, the elimination of degree 2 (denoted by � ) and 5 (denoted by asterisks)
do affect the lowest two eigenvalues that coincide with the predicted conclusion. And the
highest eigenvalue deviates from the true value (denoted by �) with large difference if the
first degree is eliminated (denoted by +). However, the deletion of the first degree hardly
affect the lower four eigenvalues.

(ii) Example 2: A prismatic beam

A prismatic cantilever beam, as shown in Figure 7, is taken as the second demonstration
example. The beam is divided into five flexural elements, all of which have the same
flexural rigidity EI. A consistent mass matrix is employed in the FE formulation. The
assembled system stiffness and mass matrices may be found from lots of texts, e.g.,
Geradin and Rixen [22] and will not be shown here. In addition, this example is chosen
since at least five principal (denoted by odd degrees in Figure 7) and five secondary
(denoted by even degrees) d.o.f.s have been known a priori from the physical point of view.
However, as it will be shown in the next context, one will apply the MESM to select the
primary d.o.f.s, instead of depending on the engineers’ experiences.

Normally, the stiffness and mass matrices are obtained separately when using a FE
formulation. The system matrix A is then computed from a transformation of mass matrix
on to the stiffness matrix. Depending on the transformation, the system matrix A may be
symmetric or non-symmetric. For example, if one decomposes the mass matrix into the
form

M ¼ RD2RT ¼ ðRDÞðRDÞT;

where D is a diagonal matrix containing all eigenvalues of M, then the transformation
preserves the symmetry of FEM formulation. Nevertheless, one is able to get two different
system matrices that contain the same eigenvalues.
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In order to apply MESM, let g=0.02 in equation (25), one is able to define the ten
pseudo-basis vk, k=1–10. Therefore, the approximate modal energies of the individual
d.o.f.s can be calculated by using equation (32). The results of the computations are shown
in Figures 8 and 9 for symmetric and non-symmetric matrices respectively.

It can be clearly seen from Figure 8 that there exist four peaks in the indices of
classification mi. They happen to be the odd d.o.f.s. Together with the first, there are five
primary d.o.f.s. All others are secondary since mi are close to zero, for all even i’s. The
numerical results of several d.o.f.s are shown in Table 2 for comparison. Note also that the
error is defined by the vector norm jjltrue � lcond jj; where l. . . denotes the sorted
eigenvalues.

On the other hand, the same sign and value of g are applied to the non-symmetric matrix
and the results are shown in Figure 9. Again, there exist peaks and valleys at odd and even
d.o.f.s respectively. One immediately concludes that the odd degrees are primary while the
evens ones are secondary. This conclusion is exactly the same as the common engineer’s
senses. In addition to the discrimination of primary d.o.f.s, one also knows that the first
degree is the most important primary since it accounts for the largest classification index
and the modal energy change. Similarly, the second degree, which appears to have smallest
m, is the one that accounts the most contribution to the highest eigenvalue. Thus, one can
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eliminate this degree first without including much error to the lower eigenvalues. On the
other hand, if one does not include the first degree, high error may be expected. All other
d.o.f.s except the first and second appear in almost equal order in the classification indices.
All these results can be also substantiated by the data shown in Table 3. Note that the data
in Table 3 have been normalized by U; or the trace of A.

However, by comparing Figures 8 and 9 for the first d.o.f., one may notice that the
contrary for the first d.o.f. even though both predictions are qualitatively similar. It is
quite apparent, from equations (39) and (43), that the prediction for the case of non-
symmetric matrices is more accurate and thus reliable than that of symmetric one.

It is worth noting that the approximate modal energies for g=�0.2 are also plotted for
the reason of comparison. As one can see from the figure, there exist several places where



Table 2

Normalized eigenvalues obtained by eliminating one degree from symmetric system matrix

Eigenvalues/trace (A) Eliminated d.o.f.

First Second Third Fourth None

0�0002 0�0000 0�0004 0�0000 0�0000
0�0023 0�0008 0�0018 0�0015 0�0001
0�0090 0�0049 0�0069 0�0045 0�0009
0�0213 0�0147 0�0200 0�0100 0�0036
0�0993 0�0266 0�0992 0�0237 0�0098
0�1397 0�1163 0�1373 0�1256 0�0271
0�1946 0�1666 0�1922 0�1919 0�0580
0�2447 0�2213 0�2468 0�2031 0�1219
0�2746 0�2630 0�2810 0�2540 0�2461

0�5325
Error 0�1176 0�0432 0�1180 0�0587 0�0

Table 3

Eigenvalues obtained by eliminating one degree from non-symmetric system matrix

Eigenvalues/
trace(A)

Eliminated d.o.f.

First Second Third Fourth Fifth Sixth Seventh Eighth Ninth Tenth

0�0001 �0�0252 0�0001 0�0000 0�0000 0�0000 0�0000 0�0000 0�0000 0�0000
0�0007 0�0000 0�0007 0�0005 0�0007 0�0002 0�0006 0�0001 0�0003 0�0003
0�0031 0�0006 0�0025 0�0032 0�0032 0�0015 0�0032 0�0015 0�0021 0�0021
0�0091 0�0030 0�0084 0�0056 0�0074 0�0085 0�0074 0�0089 0�0080 0�0036
0�0262 0�0099 0�0266 0�0118 0�0271 0�0107 0�0269 0�0105 0�0259 0�0116
0�0576 0�0310 0�0575 0�0397 0�0530 0�0525 0�0542 0�0479 0�0579 0�0372
0�1235 0�0737 0�1170 0�1060 0�1199 0�0809 0�1172 0�0990 0�1209 0�0948
0�2505 0�1643 0�2407 0�2450 0�2443 0�1956 0�2459 0�1673 0�2432 0�2231
0�5979 0�3047 0�5267 0�3925 0�5313 0�5039 0�5321 0�5262 0�5323 0�5316

Error 0�3819 0�0783 0�3123 0�1976 0�3181 0�2704 0�3190 0�2876 0�3191 0�3053

W. LI424
the approximate modal energies go below zero in case g is taken as value of �0.2.
Therefore, MESM with g=�0.2 is inadequate since there exist sign changes in #VV k when k

is odd.

6. CONCLUDING REMARKS

A new and automatic selection technique based on the approximate modal energy has
been developed for matrix condensations in this paper. The method is called the ‘modal
energy selection method.’ By defining a new basis in the neighborhood of the original
natural space, the individual modal energy gradients can be estimated. The primary
degrees of freedom for the eigenvalue problem are then determined according to the
indices of classification and the variation of the energies. In case the energy variation of a
degree tends to increase in this neighborhood, that degree is classified as secondary since it
relatively has tendency to provide the energy to the nodes nearby. On the other hand, if the
energy variation is decreasing, then it is primary. All the classification criteria are finally
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mapped to one parameter, which is called the index of classification. That is, by examining
the magnitude of these indices, one is able to determine the primary and secondary degrees
from the system matrix. Moreover, the error bound is also estimated in this report. The
new selection method is demonstrated by a well-known cantilever beam problem in which
both primary and secondary degrees are known. In addition to the diagram, numerical
data also provided to substantiate the new method.
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